Algebra II Unit 1: Sequences, Series, and Functions

AII.EL.1: Write arithmetic and geometric sequences both recursively and with an explicit formula; use them to model situations and translate between the two forms.

AII.CNE.6: Find partial sums of arithmetic and geometric series and represent them using sigma notation.

All.F.1: Determine whether a relation represented by a table, graph, or equation is a function.

All.F.2: Understand composition of functions and combine functions by composition.

AII.F.3: Understand that an inverse function can be obtained by expressing the dependent variable of one function as the independent variable of another, as f and g are inverse functions if and only if f(x)=y and g(y)=x, for all values of x in the domain of f and all values of y in the domain of g. Find the inverse of a function that has an inverse.

All.F.4: Understand that if the graph of a function contains a point (a, b), then the graph of the inverse relation of the function contains the point (b, a); the inverse is a reflection over the line y = x.

AII.EL.5: Know that the inverse of an exponential function is a logarithmic function. Represent exponential and logarithmic functions using graphing technology and describe their inverse relationship.

AII.F.5: Describe the effect on the graph of f(x) by replacing f(x) with f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative) with and without technology. Find the value of k given the graph of f(x) and the graph of f(x) + k, k f(x), f(kx), or f(x + k).

Algebra II Unit 2: Polynomial Functions & Equations

All.Q.1: Represent real-world problems that can be modeled with quadratic functions using tables, graphs, and equations; translate fluently among these representations. Solve such problems with and without technology. Interpret the solutions and determine whether they are reasonable.

All.Q.2: Use completing the square to rewrite quadratic functions into the form $y = a(x + h)^2 + k$, and graph these functions with and without technology. Identify intercepts, zeros, domain and range, and lines of symmetry. Understand the relationship between completing the square and the quadratic formula.

AII.F.5: Describe the effect on the graph of f(x) by replacing f(x) with f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative) with and without technology. Find the value of k given the graph of f(x) and the graph of f(x) + k, k f(x), or f(x + k).

AII.PR.1: Solve real-world and other mathematical problems involving polynomial equations with and without technology. Interpret the solutions and determine whether the solutions are reasonable.

AII.PR.2: Graph relations and functions including polynomial, and piecewise-defined functions (including step functions and absolute value functions) with and without technology. Identify and describe features, such as intercepts, zeros, domain and range, end behavior, and lines of symmetry.

AII.PR.1: Solve real-world and other mathematical problems involving polynomial equations with and without technology. Interpret the solutions and determine whether the solutions are reasonable.

AII.PR.2: Graph relations and functions including polynomial, with and without technology. Identify and describe features, such as intercepts, zeros, domain and range, end behavior, and lines of symmetry.

All.Q.1: Represent real-world problems that can be modeled with quadratic functions using tables, graphs, and equations; translate fluently among these representations. Solve such problems with and without technology. Interpret the solutions and determine whether they are reasonable.

All.Q.2: Use completing the square to rewrite quadratic functions into the form $y = a(x + h)^2 + k$, and graph these functions with and without technology. Identify intercepts, zeros, domain and range, and lines of symmetry. Understand the relationship between

All.Q.3: Use the discriminant to determine the number and type of solutions of a quadratic equation in one variable with real coefficients; find all solutions and write complex solutions in the form of a ± bi for real numbers a and b.

AII.CNE.1: Know there is an imaginary number, i, such that $i^2 = -1$, and every complex number can be written in the form a + bi, with a and b real. Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

AII.PR.1: Solve real-world and other mathematical problems involving polynomial equations with and without technology. Interpret the solutions and determine whether the solutions are reasonable.

All.PR.2: Graph relations and functions including polynomial,-functions with and without technology. Identify and describe features, such as intercepts, zeros, domain and range, end behavior, and lines of symmetry.